DEBFIND Suche nach Debian-Paketen

Suchplatform für Softwarepakete und Archive Debian-basierter Linux-Distributionen

beta ! Diese website wird noch weiterentwickelt.

Liste aller Kategorien/Sektionen | Suchmaske | Haftungsausschluß

Paketbeschreibung


Paketnamelibranlip-dev
Beschreibunggenerates random variates with multivariate Lipschitz density
Archiv/RepositoryOffizielles Ubuntu Archiv lucid (universe)
Version1.0-4.1
Sektionuniverse/libdevel
Prioritätoptional
Installierte Größe84 Byte
Hängt ab vonlibc6 (>= 2.7-1), libgcc1, libranlip1c2 (= 1.0-4.1), libstdc++6 (>= 4.1.1-21), libtnt-dev
Empfohlene Pakete
PaketbetreuerUbuntu MOTU Developers
Quellelibranlip
Paketgröße15330 Byte
Prüfsumme MD554d8d264c587f15b04eedf7de4d7cb5c
Prüfsumme SHA13a8d8e248640f5248813eeecd8a3b94bf03fcd60
Prüfsumme SHA2568ba4d040552e1980656d9d0aacdc0bafd34f770b1a15e1c37b2db592d1c59414
Link zum Herunterladenlibranlip-dev_1.0-4.1_i386.deb
Ausführliche BeschreibungRanLip generates random variates with an arbitrary multivariate Lipschitz density. . While generation of random numbers from a variety of distributions is implemented in many packages (like GSL library http://www.gnu.org/software/gsl/ and UNURAN library http://statistik.wu-wien.ac.at/unuran/), generation of random variate with an arbitrary distribution, especially in the multivariate case, is a very challenging task. RanLip is a method of generation of random variates with arbitrary Lipschitz-continuous densities, which works in the univariate and multivariate cases, if the dimension is not very large (say 3-10 variables). . Lipschitz condition implies that the rate of change of the function (in this case, probability density p(x)) is bounded: . |p(x)-p(y)|=p(x), using a number of values of p(x) at some points. The more values we use, the better is the hat function. The method of acceptance/rejection then works as follows: generatea random variate X with density h(x); generate an independent uniform on (0,1) random number Z; if p(X)<=Z h(X), then return X, otherwise repeat all the above steps. . RanLip constructs a piecewise constant hat function of the required density p(x) by subdividing the domain of p (an n-dimensional rectangle) into many smaller rectangles, and computes the upper bound on p(x) within each of these rectangles, and uses this upper bound as the value of the hat function.


Impressum
Linux is a registered trademark of Linus Torvalds