DEBFIND Suche nach Debian-Paketen

Suchplatform für Softwarepakete und Archive Debian-basierter Linux-Distributionen

beta ! Diese website wird noch weiterentwickelt.

Liste aller Kategorien/Sektionen | Suchmaske | Haftungsausschluß

Paketbeschreibung


Paketnamelibranlip1c2
Beschreibunggenerates random variates with multivariate Lipschitz density
Archiv/RepositoryOffizielles Debian Archiv squeeze (main)
Version1.0-4.1
Sektionlibs
Prioritätoptional
Installierte Größe172 Byte
Hängt ab vonlibc6 (>= 2.7-1), libgcc1, libstdc++6 (>= 4.1.1-21)
Empfohlene Pakete
PaketbetreuerJuan Esteban Monsalve Tobon
Quellelibranlip
Paketgröße105524 Byte
Prüfsumme MD5cfdc39bd30bd4aa30044ee94a0bd1d2a
Prüfsumme SHA12525688808bf7656a298ed5164437d9d50536281
Prüfsumme SHA25633779730ab818897cdfc7267a49b64fffafcca06f711bc824a4baff55568b3b6
Link zum Herunterladenlibranlip1c2_1.0-4.1_i386.deb
Ausführliche BeschreibungRanLip generates random variates with an arbitrary multivariate Lipschitz density. . While generation of random numbers from a variety of distributions is implemented in many packages (like GSL library http://www.gnu.org/software/gsl/ and UNURAN library http://statistik.wu-wien.ac.at/unuran/), generation of random variate with an arbitrary distribution, especially in the multivariate case, is a very challenging task. RanLip is a method of generation of random variates with arbitrary Lipschitz-continuous densities, which works in the univariate and multivariate cases, if the dimension is not very large (say 3-10 variables). . Lipschitz condition implies that the rate of change of the function (in this case, probability density p(x)) is bounded: . |p(x)-p(y)|=p(x), using a number of values of p(x) at some points. The more values we use, the better is the hat function. The method of acceptance/rejection then works as follows: generatea random variate X with density h(x); generate an independent uniform on (0,1) random number Z; if p(X)<=Z h(X), then return X, otherwise repeat all the above steps. . RanLip constructs a piecewise constant hat function of the required density p(x) by subdividing the domain of p (an n-dimensional rectangle) into many smaller rectangles, and computes the upper bound on p(x) within each of these rectangles, and uses this upper bound as the value of the hat function.


Impressum
Linux is a registered trademark of Linus Torvalds